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Abstract. Steady advances in computer power have enabled researchers to consider tackling 
increasingly complex problems. In the academic community, current focus is on multiscale 
modelling and multi-physics. The aim is for simulation to be more realistically representative 
of real world processes. This paper considers the simulation of coupled problems involving 
more than one physical process, multi-physics. In particular, the authors present some ideas 
and experiences regarding the use of the finite element method and parallel computers to 
solve 3D coupled problems.  In the literature, two main approaches have been used to solve 
coupled problems. These are sometimes referred to as (i) fully coupled modelling and (ii) un-
coupled multi-physics. Both methods have their advantages and disadvantages. In the paper, 
the authors discuss some of the issues that should be considered when selecting a particular 
strategy, to ensure computational efficiency. Particular attention is given to an example from 
the field of magnetohydrodynamics: three dimensional steady state flow in a perfectly insu-
lated rectangular duct.  The magnetohydrodynamics example involves solving a system in 
which both magnetic and hydrodynamic forces influence the behaviour of the fluid. A fully 
coupled solution strategy is presented in which the full system is represented by a single 
“ stiffness”  matrix and solved by a single computer program.  A parallel implementation of an 
element-by-element variant of BiCGStab(l) is used to solve the equations, demonstrating the 
efficient use of up to 128 processors. 
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1 INTRODUCTION 

In finite element analysis, parallel computing is typically employed to enable larger prob-
lems to be solved than is possible using a single processor or to drastically reduce solution 
times so that useful studies of a particular process can be carried out.  In simple terms, the ef-
fectiveness of parallel computation in achieving these aims can be assessed with reference to 
the quantity scalability (a measurement of the benefit achieved by adding increasing numbers 
of processors).  In this paper, the authors first consider some of the issues that affect scalabil-
ity before describing in detail a fully coupled approach to the solution of a magnetohydrody-
namics problem. 

The two main characteristics of computer programs that limit scalability are (i) the ratio of 
the serial to the parallel fraction in the program and (ii) the ratio of computation to communi-
cation (message passing between processors). 

In the first case, typified by Amdahl’s Law [1], an example of a serial operation could be 
file input or output.  The parallel fraction may be an “embarrassingly parallel”  (very efficient) 
linear equation solver.  Table 1 presents a hypothetical example to illustrate the limitations 
imposed by Amdahl’s Law.  The table shows speed-up for a hypothetical computational sce-
nario in which serial and perfectly parallel fractions are equal on one processor.  In this case, 
the best performance that can be expected using even a large number of processors is that the 
total solution time is half that when using one processor. 

 
Processors 1 2 4 8 16 32 64 100 
Time - serial fraction 50 50 50 50 50 50 50 50 
Time - parallel fraction 50 25 12.5 6.25 3.13 1.56 0.78 0.5 
Total solution time 100 75 62.5 56.25 53.13 51.56 50.78 50.5 
Speed-up 1 1.33 1.60 1.78 1.88 1.94 1.97 1.98 

Table 1 Consequences of Amdahl’s Law 

The second characteristic, the ratio of computation to communication, is illustrated most 
clearly by considering an uncoupled solution strategy.  Using an uncoupled strategy, the 
physical processes and their interaction are dealt with separately.  In magnetohydrodynamics, 
the fluid flow may be solved using one software application and the magnetic field solved us-
ing another.  Time spent in the software packages may be considered “computation”  and time 
spent in the transferring data from one software package to another may be considered “com-
munication” .  Interaction using an uncoupled strategy is illustrated in Figure 1. 

Figure 1 Steps in a Typical Uncoupled Solution Strategy 

 
For each load or time step 
 

1. Compute the fluid flow in software package A  P 
2. Write results to intermediate storage   S 
3. Interpolate quantities to magnetic representation S/P 
4. Compute magnetic field in software package B  P 
5. Write results to intermediate storage   S 
6. Interpolate quantities to fluid representation S/P 

 
Repeat 
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The benefit of the uncoupled approach is that the best available parallel solvers can be se-
lected for the fluid and magnetic processes.  One disadvantage is that these solvers may re-
quire different representations of the model (finite elements for the magnetic field and finite 
volumes for the fluid).  Interpolation of results from one representation to another requires 
additional computation and may influence the final accuracy of the results.  Intermediate stor-
age is also required.  For large problems, usage of disk will be necessary rather than in-core 
memory. 

In Figure 1, the letters “P”  and “S”  represent parallel and serial respectively.  With refer-
ence to Table 1, one can appreciate that the hypothetical uncoupled strategy will suffer with 
respect to Amdahl’s Law.  In a parallel computing environment, total solution times may be 
dominated by serial activities, or communication between packages, with the consequence 
that parallel computation will be of little benefit to large, coupled problems. 

In a fully coupled strategy, sometimes referred to as the “monolithic”  approach, the physi-
cal processes may be solved as a single system of equations.  One clear advantage is that the 
serial bottlenecks or communication overhead that arises in uncoupled strategies do not occur.  
Another benefit is that a scalable parallel solution strategy is more likely to exist for the fully 
coupled system, giving the potential to greatly reduce solution times using large numbers of 
processors.  With little or no serial fraction, the limitation to scalability imposed by Amdahl’s 
Law does not occur.  

Selecting a strategy and an appropriate solution algorithm for parallel computing requires 
considerable care.  The authors have noted a tendency in the community to select an algo-
rithm that runs well on a serial machine and try and adapt it to parallel computing.  An effi-
cient serial strategy is not necessarily efficient in parallel.  Two metrics need to be taken into 
account when comparing solution strategies (i) the total number of operations required to find 
the solution and (ii) the rate at which those operations can be processed on a particular 
computer platform.  For instance, when comparing uncoupled and fully coupled strategies, 
one may find that an uncoupled approach requires fewer operations to deliver a solution than 
a fully coupled method.  However, if one takes into account the efficiency by which 
operations are processed and scalability on a parallel platform, an algorithm that requires 
more absolute work, may return results faster than a seemingly cheaper method (see Table 2). 

 
 Absolute Cost 

Operations 
% Use of Machine’s 
Peak Performance 

Solution Time 
1 Processor (Serial) 

Solution Time  
100 Processors 

Algorithm A 1,000 1% 1 unit 0.5 unit 
Algorithm B 10,000 10% 1 unit 0.01 units 

Table 2 Comparison of Two Hypothetical Algorithms 

In Table 2, Algorithm A requires fewer operations to solve the system than Algorithm B.  
However Algorithm A makes less efficient use of the computer hardware.  Assuming that Al-
gorithm A is the same one that is presented in Table 1 (equal serial and parallel fractions) and 
Algorithm B is embarrassingly parallel, an apparently costly algorithm has the potential to 
solve systems of equations much faster than a cheaper one when using large numbers of proc-
essors. 

In summary, when considering the use of parallel computing to solve coupled physical 
problems, the following three observations need to be taken into account: 

 
• Scalability is limited by the serial fraction in the application. 
• Scalability is limited by communication between processors and applications. 
• An expensive serial algorithm may be the most efficient on a parallel platform. 
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2 MAGNETOHYDRODYNAMIC DUCT FLOW 

In this paper, a fully coupled approach to solving magnetohydrodynamic problems is pre-
sented.  Magnetohydrodynamics is a field which concerns the study of the behaviour of elec-
trically conducting fluids under the influence of magnetic fields.  Magnetohydrodynamics has 
a range of diverse application areas.  Examples include metal forming processes, measure-
ment of the flow of coolants in nuclear reactors, plasma containment for fusion research and 
astrophysics. 

The equations to be solved, for a steady state incompressible flow, are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The equation relating to the fluid flow (1) and the equation relating to the magnetic field (2) 

both contain terms in velocity ui and magnetic field Bi, i.e. they are coupled.  Equations (3) 
and (4) relate to the continuity conditions for the ui and Bi respectively.  In addition to the 
usual fluid properties, µ (permittivity) and σ (conductivity) are required 

The selected test problem concerns magnetohydrodynamic flow through a perfectly insu-
lated rectangular duct.  The geometry of the problem, together with the boundary conditions, 
is shown in Figure 2.  The full field is applied in the region indicated by dark grey.  In the 
light grey zone, the strength of the applied field decays to zero.  Although the geometry is 
simple, the authors are unaware of any other work in which this system has been solved in 
three dimensions using the finite element method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Geometry and Boundary Conditions for Magnetohydrodynamic Duct Flow 

Externally applied 
magnetic field 

Prescribed  
inlet 
velocity 

Symmetry plane 

(1) 

(2) 

(3) 

(4) 
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The problem has been discretised using hexahedral elements.  Twenty noded bricks have 
been used to represent the fluid velocity, eight nodes for the fluid pressure and twenty nodes 
for the magnetic field.  With three degrees of freedom for both the fluid velocity and the mag-
netic field and one degree of freedom for the pressure, each full element “stiffness”  matrix has 
128 degrees of freedom.  The full reconstructed finite element mesh is shown in Figure 3.  For 
the purposes of simulation, symmetry was taken into account and only half the model shown 
was used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Full Reconstructed Finite Element Mesh 

The equilibrium equation to be solved (Equation 5) is of the form [Ke](r) = (f), where Ke is 
the element stiffness matrix.  All the entries Cij are submatrices of size 60 x 60 except for C21, 
C23, C24, C12, C32 and C42 which are of size 8 x 60. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  The stiffness matrix has a structure that can be broken down into regions that represent 

the fluid properties, the magnetic properties and the interaction between the two physical 
processes.  In an uncoupled approach, the fluid flow and magnetic field problems may be 
solved in separate software packages.  The interaction would involve an offline interpolation 
between the two representations.  This is in clear contrast to the fully coupled approach where 
the interactions are built in at the element level through the coupling terms. 
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3 SOLUTION STRATEGY 

In three dimensions and with 128 degrees of freedom per element, a direct solver would 
quickly run out of core memory for this problem.  Therefore a more memory efficient strategy 
such as an element-by-element approach with an iterative solver is essential.  As the element 
stiffness matrices are unsymmetrical, BiCGStab(l) is an appropriate choice of iterative solver. 

In previous work the authors have developed a library of routines that enable scalable par-
allel finite element analysis for a wide range of problem types [2].  The routines, together with 
example parallel programs are freely available in the form of an open source library, 
ParaFEM [3].  This library has been used as a basis for developing the parallel program to 
solve the magnetohydrodynamic problem presented here. 

The problem is subdivided across processors by assigning an equal number of finite ele-
ments to each one.  In domain decomposition techniques, a global matrix is assembled and 
later decomposed.  In the element-by-element approach, a global matrix is never created, and 
perhaps domain composition is a more apt description of the process followed here. 

At the core of the element-by-element implementation of BiCGStab(l) is a series of ele-
ment loops comprising matrix-vector multiplications.  This is where most of the computa-
tional effort is concentrated.  One might argue that the modern commodity processors used in 
supercomputers are optimised for such operations.  On the machine used for this study, an 
SGI Origin 3800, matrix-vector computations can achieve 40% of the machine’s peak per-
formance and matrix-matrix 70%.  This is in contrast with direct solvers that typically achieve 
1 or 2% peak. 

Although the presence of matrix-vector multiplication implies that BiCGStab(l) makes ef-
ficient use of the processors, there are two computational issues that can be addressed to fur-
ther improve performance.  Firstly, refering to Equation (5), the element matrices are sparse.  
A standard matrix-vector multiplication would carry out many redundant floating point opera-
tions per element, multiplying by zero.  Secondly, large element matrices rapidly fill cache 
memory.  Most current computers use a small high speed cache memory to reduce the time 
for memory access during computation.  Once the processor starts to retrieve data from the 
main core memory, performance or the efficient utilization of the processor suffers. 

To counter these two inefficiencies, redundant calculations and poor cache usage, the finite 
element based matrix-vector computations can be optimised.  The key is to operate at the sub-
matrix level, storing by sub-matrix (Cij) and looping over sub-matrices rather than elements.  
The advantage is a reduction in total memory usage and a reduction in the total number of 
floating point operations carried out per finite element.  Operating on submatrices requires 
less data to be loaded from main memory during each stage in the matrix-vector computation 
– the data is more likely to fit in the faster cache memory.  Furthermore, no operations are 
carried out involving the sparse regions of the element stiffness matrix.  Reductions in solu-
tion times of up to factor of 4 have been achieved using this implementation [4]. 

4 RESULTS 

The results presented in this section are for the solution of a steady state magnetohydrody-
namic duct flow problem with 4 million equations.  Figures 4 and 5 present performance data, 
whereas Figures 6-8 illustrate features of the fluid flow and the magnetic field.  In the analy-
ses, full account of problem symmetry was considered in order to reduce solution times.  For 
clarity in the visualizations, the original duct geometry has been restored. 

Figure 4 shows the computational speed up achieved using up to 128 processors on the 
SGI Origin 3800 system.  The dashed line shows the ideal speed up.   
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Figure 4 Speed Up For 4 Million Equation Magnetohydrodynamic Problem 

Figure 5 presents peak performance.  The dashed line shows the peak performance 
achieved in the computational kernel, the matrix-vector computations in the BiCGStab(l) al-
gorithm.  The solid line shows the peak performance for the whole program.  The difference 
between the two is mainly attributed to communication costs.  The authors note that further 
improvements may be made to reduce communication overhead. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Percentage of Peak Performance 

Figure 6 shows three images that illustrate the interaction between the fluid flow and the 
magnetic field.  Each image shows an outline of the rectangular duct, with the fluid flowing in 
the direction of the arrows, from bottom to top.  The position of the external magnetic field is 
indicated by grey squares.   
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Figure 6 Interaction Between Fluid Flow and Magnetic Field 

In Figures 6a and 6b, a randomized colour map of high frequency stripes is used to high-
light the features of the fluid flow and magnetic field respectively.  As the colour map is ran-
domized, the transition from light to dark grey does not represent low to high values.   

Figure 6a shows the magnitude of the fluid velocity and it is clear that the fluid flow is af-
fected by the magnetic field.  Figure 6b shows the magnitude of the magnetic field.  The im-
age clearly indicates that the magnetic field is dragged downstream by the fluid flow.  Figure 
6c shows the interaction between the two physical processes with the distortion of the mag-
netic field lines. 

Figure 7 again uses a randomized greyscale colour map to represent the magnitude of the 
velocity.   Slice planes are used to illustrate the flow at three locations along the duct, with the 
downstream direction running from left to right (Figures 7a to 7c).  Figure 7a represents an 
approximately parabolic flow profile, as was prescribed at the duct inlet.  Figure 7b shows 
how this is disrupted by the influence of the magnetic field.  In the final image, Figure 7c, the 
flow takes the form of two jets.  These are represented by the two circular regions.  The split-
ting of a parabolic flow into two fluid jets by the application of a magnetic field is a well-
known feature of magnetohydrodynamic flows through ducts and has been demonstrated ex-
perimentally elsewhere [5]. 

 
 
 
 
 

(a) (b) (c) 



Lee Margetts, Ian M. Smith and Joanna M. Leng 

9 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7 Variation of Velocity Magnitude Along the Duct 

 
Figure 8a shows fluid streamlines, indicating the path of a number of selected fluid parti-

cles as they pass through the duct.  In this case, a uniform greyscale colour map is used: going 
from grey for slow flow to white for fast flow.  Figures 8b and 8c show the same streamlines 
with the observer viewing them from the duct inlet and from a downstream position, close to 
the applied magnetic field, respectively.  The streamline trajectories clearly show that a three 
dimensional finite element model is needed to capture the full complexity of the physical 
processes being studied.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8 Velocity Streamlines From Three Different Viewpoints 

(a) (b) (c) 

(a) (b) (c) 

fast slow 



Lee Margetts, Ian M. Smith and Joanna M. Leng 

10 

5 CONCLUSIONS  

Two techniques for the solution of coupled problems have been described, the uncoupled 
and the fully coupled approaches.  Using simple hypothetical examples, it has been shown 
that careful consideration must be made in selecting the best strategy, especially when use is 
made of parallel computing. 

A magnetohydrodynamics problem has been used to illustrate how the fully coupled ap-
proach lends itself well to parallel computation.  In this paper, performance figures have been 
shown for a four million equation problem that can be solved efficiently on up to 128 proces-
sors.  Specific optimizations of the element-by-element solution strategy have been described 
that take advantage of the sparsity of the element stiffness matrices.  Finally, the physical re-
sults have been visualized for fully coupled three dimensional flow through an insulated rec-
tangular duct.  The visualizations of streamlines show that the flow is complex and can only 
be properly captured in a three dimensional model. 

Finally, the authors note that this is not a particularly large analysis.  Systems of more than 
half a billion equations have recently been described using up to 4088 processors [6]. 
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